首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224506篇
  免费   17532篇
  国内免费   8792篇
电工技术   12186篇
技术理论   24篇
综合类   14115篇
化学工业   37257篇
金属工艺   12992篇
机械仪表   14459篇
建筑科学   17335篇
矿业工程   7379篇
能源动力   6385篇
轻工业   13336篇
水利工程   3540篇
石油天然气   16363篇
武器工业   1647篇
无线电   24798篇
一般工业技术   26802篇
冶金工业   12479篇
原子能技术   2229篇
自动化技术   27504篇
  2024年   402篇
  2023年   3561篇
  2022年   5154篇
  2021年   8440篇
  2020年   6865篇
  2019年   5822篇
  2018年   6563篇
  2017年   7395篇
  2016年   6634篇
  2015年   8777篇
  2014年   11192篇
  2013年   13203篇
  2012年   14203篇
  2011年   15428篇
  2010年   13412篇
  2009年   12668篇
  2008年   12343篇
  2007年   11841篇
  2006年   12340篇
  2005年   10744篇
  2004年   7259篇
  2003年   6206篇
  2002年   5433篇
  2001年   4848篇
  2000年   5354篇
  1999年   6347篇
  1998年   5354篇
  1997年   4377篇
  1996年   4103篇
  1995年   3472篇
  1994年   2780篇
  1993年   1940篇
  1992年   1520篇
  1991年   1203篇
  1990年   921篇
  1989年   723篇
  1988年   528篇
  1987年   324篇
  1986年   264篇
  1985年   188篇
  1984年   130篇
  1983年   98篇
  1982年   119篇
  1981年   97篇
  1980年   68篇
  1979年   36篇
  1978年   26篇
  1977年   20篇
  1976年   35篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
72.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
73.
As a new advanced oxidation technology, photocatalytic technology has broad application prospects in the field of wastewater treatment. However, in the actual use process, there will be difficulties in catalyst recovery and reuse. This article successfully prepared bacterial cellulose (BC) loaded silver and titanium dioxide nanoparticles (Ag-plated TiO2/BC composite pellicle) by in situ embedding method. BC not only works as the carrier to load TiO2 and Ag NPs but also adsorbs dyes to promote the reaction. As a reusable photocatalytic film, it is convenient to use and recycle in terms of testing and characterization compared with powders. The results show that Ag and TiO2 nanoparticles were closely embedded in BC. We evaluated the photocatalytic degradation performance of the catalyst on methylene blue (MB), active red X-3B, and Rhodamine B. When the reaction time was 2 h, the dye removal rates were 71%, 68%, and 82.6%. At the same time, through the inhibition zone experiment, it was found that the material has a certain inhibitory effect on both Escherichia coli and Staphylococcus aureus. Therefore, the supported catalyst prepared by this method has the advantages of high catalytic activity, relatively stable property, easy recovery, and tailorability, making it potentially applicable in sewage post-treatment links.  相似文献   
74.
Zhou  Junjie  Huang  Yu  Shen  Jialu  Liu  Xiang 《Catalysis Letters》2021,151(10):3004-3010
Catalysis Letters - The production of H2 from non-fossil sources is a key research challenge to contributing solving the forthcoming energy problem. Aqueous solutions of tetrahydroxydiboron have...  相似文献   
75.
A high-throughput approach based on magnetron co-sputtering of alloy libraries is employed to inves-tigate mechanical properties of crystalline and amorphous alloys in a ternary palladium(Pd)-tungsten(W)-silicon(Si)system with the aim to reveal the difference in plastic deformation response and extract the relevant structure-property relationships of the alloys in the system.It was found that in contrast to crystalline alloys,the amorphous ones,i.e.,metallic glasses,exhibited a much smaller fluctuation range in the plasticity parameters(Er2/H and Wp/Wt),indicating a significant difference in the plastic deformation mechanism controlling the mechanical properties for the respective alloys.We propose that the inho-mogeneous deformation of amorphous alloys localized in thin shear bands is responsible for the weaker compositional dependence of both plasticity parameters,while dislocation gliding in crystalline materials is significantly more dependent on the exact structure,thus resulting in a larger scattering range.Based on the representative efficient cluster packing model,a set of composition-dependent atomic structural models is proposed to figure out the structure-property relationships of amorphous alloys in Pd-W-Si alloy system.  相似文献   
76.
In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges.  相似文献   
77.
A sustainable power source is a key technical challenge for practical applications of electrically responsive soft robots, especially the required voltage is over several thousand volts. Here, a practicable new technology, triboelectric soft robot (TESR) system with the primary characteristics of power source from mechanical energy, is developed. At its heart is TESR with bioinspired architectures made of soft-deformable body and two triboelectric adhesion feet, which is driven and accurately controlled through triboelectric effect, while reaching maximum crawling speeds of 14.9 mm s−1 on the acrylic surface. The characteristics of the TESR, including displacement and force, are tested and simulated under the power of a rotary freestanding triboelectric nanogenerator (RF-TENG). Crawling of TESR is successfully realized on different materials surfaces and different angle slopes under the driven of RF-TENG. Furthermore, a real-time visual monitoring platform, in which TESR carries a micro camera to transmit images in a long narrow tunnel, is also achieved successfully, indicating that it can be used for fast diagnosis in an area inaccessible to human beings in the future. This study offers a new insight into the sustainable power source technologies suitable for electrically responsive soft robots and contributes to expanding the applicability of TENGs.  相似文献   
78.
Cancer remains an intractable medical problem. Rapid diagnosis and identification of cancer are critical to differentiate it from nonmalignant diseases. High-throughput biofluid metabolic analysis has potential for cancer diagnosis. Nevertheless, the present metabolite analysis method does not meet the demand for high-throughput screening of diseases. Herein, a high-throughput, cost-effective, and noninvasive urine metabolic profiling method based on TiO2/MXene-assisted laser desorption/ionization mass spectrometry (LDI-MS) is presented for the efficient screening of bladder cancer (BC) and nonmalignant urinary disease. Combined with machine learning, TiO2/MXene-assisted LDI-MS enables high diagnostic accuracy (96.8%) for the classification of patient groups (including 47 BC and 46 ureteral calculus (UC) patients) from healthy controls (113 cases). In addition, BC patients can also be identified from noncancerous UC individuals with an accuracy of 88.3% in the independent test cohort. Furthermore, metabolite variations between BC and UC individuals are investigated based on relative quantification, and related pathways are also discussed. These results suggest that this method, based on urine metabolic patterns, provides a potential tool for rapidly distinguishing urinary diseases and it may pave the way for precision medicine.  相似文献   
79.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号